
Struct 1

Struct
Tags c

Created time

Lecture No. 9

Reviewed

Introduction
Suppose you may want to write a program to handle football players data. Each
player has some information such as player name, date of birth, position, goals
scored, etc. It is possible to setup arrays for each type but limits you. You would
need all individual arrays to be syncronised. C provides a better way to handle this
with the concepts of structs .

Declare a Struct
The struct keyword enables you to define a collection of variables called a
structure that you can treat as a single unit. You can define it as follows:

struct <struct_name>

{

<type> <field_name>;

<type> <field_name>;

...

};

// Football player example:

struct Player

@October 10, 2024 11:54 AM

Struct 2

{

 char name[30];

 int goal_scored;

};

This example declares a structure type called Player .

Note that this isn’t a variable name; it’s a new type.

This type name is referred to as a structure tag or a tag name.

The naming of the structure tag follows the same rules as for a variable name,
which you should be familiar with by now.

The variable names within the Players structure, name and goal_scored , are
called members or fields .

You can then declare a variable using this structure as follows:

struct Player player1;

It is also possible to create an instance of a structure at the same time when it is
declared as follows:

struct Player

{

 char name[30];

 int goal_scored;

} player1;

The following is to initialise the value for each field of an instance:

struct Player

{

 char name[30];

 int goal_scored;

 char position[2];

Struct 3

 float price;

} player1 = {"Cristiano Ronaldo", 500, "ST", 100};

or you can declare the struct Player first and create an instance later as follows:

struct Player player1 = {"Cristiano Ronaldo", 500, "ST", 100};

Note that, in case you don’t want to keep re-using the keyword struct everytime,
you can use typedef as follows:

typedef struct Player Player;

This defines Player to be the equivalent of struct Player .

Then you can define a variable of type Player like this:

Player player1;

Accessing Structure Methods
Player player2;

player2.goal_scored = 500;

player2.price = 100;

The . between the structure variable name and the member name is called the
member election operator.

Structure members are the same as variables of the same type. You can set
their values and use them in expressions in the same way as ordinary
variables.

Struct 4

You can also create and initialise values for an instance of a struct in a more
organised way as follows.

Player player3 = {

.name = "Kante", .position = "CM", .goal_scored = 10, .price

};

Example

❓ Write a program to manage to manage a list of football players. The
program accepts a player detail input from keyboard and prints it out.

#include<stdio.h>

#include<stdlib.h>

typedef struct Player Player; //Define Player as a type name

struct Player //Structure type definition

{

//Define struct members

 char name[30];

 int goal_scored;

 char position[2];

 float price;

};

int main(int argc, char*argv[])

{

Player player1; //Declare a variable type Player. This varia

Struct 5

//Input a player

printf("Player name:\n");

scanf("%s", player1.name); //Get an input from keyboard, sto

printf("Preferred position?\n");

scanf("%s", player1.position);

printf("Market price:\n");

scanf("%f", &player1.price); //We need & in this case becaus

printf("Goal scored:\n");

scanf("%d", &player1.goal_scored);

//Print a player by accessing to each members of the struct

printf("-------------------\n");

printf("You have input the following player:\n");

printf("Name: %s\n", player1.name);

printf("Position: %s\n", player1.position);

printf("Goal scored: %d\n", player1.goal_scored);

printf("Market price: %.2f\n", player1.price);

return 0;

}

Arrays of Structures
We want to write a program that can accept multiple inputs and print all. To deal
with such requirements, we can use arrays of structures.

Player players[50];

Struct 6

#include<stdio.h>

#include<stdlib.h>

typedef struct Player Player; //Define Player as a type name

struct Player //Structure type definition

{

 char name[30];

 int goal_scored;

 char position[5];

 float price;

};

int main(int argc, char*argv[])

{

Player player[50]; //Declare a variable type Player. This va

//Input a player

int pcount = 0; //to count the player

int selection; //This is to store the decision of the user i

do

{

printf("Player name:\n");

scanf("%s", player[pcount].name); //Get an input from ke

printf("Preferred position:\n");

scanf("%s", player[pcount].position);

printf("Market price:\n");

scanf("%f", &player[pcount].price); //We need & in this

printf("Goal scored:\n");

scanf("%d", &player[pcount].goal_scored);

Struct 7

++pcount; //Increase the player count variable by 1;

printf("Do you want to add more player (1 = Y, 0 = N)?\n

scanf("%d", &selection);

if(selection == 0)

break;

} while (pcount < 50);

//Print all players:

printf("-------------------\n");

printf("You have input the following players:\n");

for(int i = 0; i < pcount; ++i)

{

printf("Player %d:\n", i+1); //Just a signal

printf("Name: %s\n", player[i].name);

printf("Position: %s\n", player[i].position);

printf("Goal scored: %d\n", player[i].goal_scored);

printf("Market price: %.2f\n", player[i].price);

printf("\n");

}

return 0;

}

In this program the do, while loop will keep asking the user for input until there are
50 player structures in the array.

What does fgets do?

