File: Binary

7/

File: Binary

Tags
Created time @November 21, 2024 12:18 PM
Reviewed]

The alternative to text mode operations on a file is binary node. In this mode, no
transformation of the data takes place, and there is no need for a format string to
control input or output. It is much simpler than text mode. The binary data is
transferred directly into the file as it appears in the memory.

Binary mode has the advantage that no data are transformed or precision lost, as
can happen due to the conversion process with text mode. It's also faster than text
mode because there's no transformation of data.

Figure below compares the storage of a value 125 in binary and text file. In binary
mode, the exact binary data is stored in hexadecimal value with 1 byte written into
the file. Meanwhile in text mode, it is transferred to 3 ASCII values: 1, 2, 5 s0 3
bytes needed.

0x7d
binary mode 1 binary byte written
A single byte to be
written to a file:
char ch = 0x7d; text mode
conversion: %3d
‘1 ’ t2’ ¢55

0x31 | 0x32 | 0x37

3 ASCII characters written
s0 3 bytes

File: Binary

Opening a file in Binary mode

Similar to opening a text file, ropen can be used to open a file in binary mode.

Mode
rb

rb+ or r+b

wb

wb+ or w+b

ab

ab+ or a+b

Description
Open a binary file to read to it
Open a binary file to read and write

Open or create a binary file to write to it. If the file exists, its length is
truncated to zero so the contents will be overwritten

Truncate an existing binary file to zero length and open it for update. If
the file does not exist, create it and open it for updating

Open or create a binary file to append to it. All writes will be placed at the
end of the file.

Open or create a binary file for update, with all writes happening at the
end of the file

Writing a Binary File

unsigned int fwrite(const void * pdata, unsigned int size, unsi¢

o The first parameter is the address of an array of data items to be written. With
a parameter type void* any type of array can be passed as the argument to

the function.

o The second parameter is the size of an array element

e The third parameter is the number of array elements.

e The last parameter is the pointer to the file stream.

e The integer returned is the number of items written. This will be less
than nitens if @ write error occurs that prevents all of the data from being
written. If size or nitens is 0, nothing is written to the file.

#include<stdio.h>
#include<stdlib.h>

int main()

{
FILE *pfile = NULL; // File pointer
char *filename = "myfile.bin"; //So a binary file has an ex’
pfile = fopen(filename, "wb"); //open a file with a binary 1
if(!pfile) //check if the open operation work correctly

{

printf("Error opening %s for writing. Program terminate
exit(1);

int data[] = {7,8,9}; //the array of integers
int num_items = sizeof(data)/sizeof(int); //calculate the n
int wcount = fwrite(data, sizeof(int), num_items, pfile); /.

fclose(pfile); //close the file
return 0;

Reading a Binary File
unsigned int fread(void * pdata, unsigned int size, unsigned in

The parameters are the same as for furite() :
e pdata is the address of an array into which the data items are to be read,
e size iSthe number of bytes per item,

e nitens iSthe number of items to be read,

File: Binary

File: Binary

prile is the file pointer.

#include<stdio.h>
#include<stdlib.h>

int main()

{

FILE *pfile = NULL; // File pointer
char *filename = "myfile.bin"; //So a binary file has an ex
pfile = fopen(filename, "rb"); //open a file with a binary 1
if(!pfile) //check if the open operation work correctly
{
printf("Error opening %s for writing. Program terminatet
exit(1);

int data[] = {0,0,0}; //Create an array to store the data
int num_items = sizeof(data)/sizeof(int); //Identify the lel
int wcount = fread(data, sizeof(int), num_items, pfile); /.
fclose(pfile); //close the file

/* print the array to see if the file has been read correct.
for(int 1 = 0; i < num_items; ++1)

{

printf("%d ", data[i]);
3
return 0O;

File: Binary

? Write a program to store detail of a student into a binary file. The
program then reads the file and display the result.

#include<stdio.h>
#include<string.h>

typedef struct Student Student;

struct Student{
char name[50];
char college[40];
int age;
float grade;

iy

int main()

FILE *pfile = NULL;
char *filename = "studentBinary.bin";
pfile = fopen(filename, "wb");
if(!pfile)
printf("Failed to open %s.\n", filename);

Student s;

//Enter student detail from keyboard
printf('"Name: \n");

scanf("%s", s.name);
printf("College: \n");

scanf("%s'", s.college);

printf("Age: \n");

scanf("%d", &s.age);

printf("Grade: \n");

File: Binary

scanf("%f", &s.grade);

//write the data into the binary file:

int wcountl fwrite(s.name, 1, strlen(s.name), pfile); //wi
int wcount2 fwrite(s.college, 1, strlen(s.college), pfile
int wcount3 fwrite(&s.age, sizeof(int), 1, pfile); //writ«
int wcount4 fwrite(&s.grade, sizeof(float), 1, pfile); /AN

fclose(pfile);

//Read the binary file
pfile = fopen(filename, "rb"); //Now the mode is read binanr
if(!'pfile)

printf("Failed to open %s.\n", filename);

Student s2;

int rcountl
int rcount2
int rcount3
int rcount4

fread(s2.name, sizeof(char), strlen(s.name), |
fread(s2.college, sizeof(char), strlen(s.coll«
fread(&s2.age, sizeof(int), 1, pfile);
fread(&s2.grade, sizeof(float), 1, pfile);

fclose(pfile);

printf("The following student information is found in the f:
printf('"Name: %s\n'", s2.name);

printf("College: %s\n", s2.college);

printf("Age: %d\n", s2.age);

printf("Grade: %f\n", s2.grade);

return 0;

