
Linked List 1

Linked List
Tags

Created time

Reviewed

Why do we need linked lists?
Sometimes we need to use linked lists to optimize the usage of resources. Usually
not because you don’t have enough memory, but because the device doesn’t have
the chunk of memory together that you are looking for.

Singly Linked List

❓ Write a program to handle a list of students, each student contains the
following information:

Name (an array of 20 characters)

Programme (an array of 20 characters)

Grade (float)

The program also provide some functions such as print the student lists,
sorting the list based on grades, calculate the average of grades.

You have dealt with such a problem by using an array of the structure, i.e.
something like Student student[50] to store the information. A drawback of this is
that you have to ensure that a block of memory is available to be allocated to store
the data. What if the memory is fragmented and it is not possible to allocate a
block of memory for data storge? Let’s use linked list as follows.

@November 12, 2024 11:04 AM

Linked List 2

#include<stdio.h>

#include<stdlib.h>

/*Declare a structure of Student */

typedef struct Student Student;

struct Student {

char name[20];

char programme[20];

float grade;

Student *next;

};

/*Functional prototype */

Student* get_students(); /* You may notice that the function get

void printStudentList(Student *start); /*to print the student li

int main()

{

Linked List 3

Student *start = NULL;

start = get_students();

printStudentList(start);

return 0;

}

Student* get_students() /* This mean that the function will retu

{

Student *current, *first; /*declare two pointers */

int selection; /* to ask if the user keep entering new stude

first = (Student*)calloc(1,sizeof(Student)); /*create the fi

current = first; /*Now the current node is also the first no

/*fill data for the first node */

printf("Student name: \n");

scanf("%s", current->name);

printf("Programme: \n");

scanf("%s", current->programme);

printf("Grade: \n");

scanf("%f", ¤t->grade);

printf("Add more student? (1=Y, 0 = N): \n");

scanf("%d", &selection);

/*create the following nodes until the user select No */

while(selection) //while selection is 1 (Yes)

{

/* allocate node and change the current point */

current->next = (Student*)calloc(1, sizeof(Student));

current = current->next;

/*fill the new node */

printf("Student name: \n");

Linked List 4

scanf("%s", current->name);

printf("Programme: \n");

scanf("%s", current->programme);

printf("Grade: \n");

scanf("%f", ¤t->grade);

printf("Add more student? (1=Y, 0 = N): \n");

scanf("%d", &selection);

}

current->next = NULL; /* in case the last node */

return first; /* return the address of the first node */

}

/* This is the function to display the list of the students. Pay

void printStudentList(Student *start)

{

int count = 0;

Student* p = NULL;

for(p = start; p != NULL; p = p->next)

{

++count;

printf("Student #%d: ", count);

printf("%s, %s, %.2f\n", p->name, p->programme, p->grade

}

}

Linked lists are invaluable in applications in which you need to process an
unknown number of structures, such as you have here.

The main advantages of a linked list relate to memory usage and ease of
handling. You occupy only the minimum memory necessary to store and
process the list. Although the memory used may be fragmented, you have no
problem progressing from one structure to the next. As a consequence, in a
practical situation in which you may need to deal with several different types

Linked List 5

of objects simultaneously, each can be handled using its own linked list, with
the result that memory use is optimized.

Looking back at the code above, we have repeated the input process twice
(for the first node and the following nodes separately). Can you re-rewite the
program above without doing this?

Doubly Linked Lists
A disadvantage of a singly linked lists is that you can only go forward, you cannot
go backwards. A small modification of adding a previous pointer creates a doubly
linked list, which will allow you to go through a list in either direction.

#include<stdio.h>

#include<stdlib.h>

/*Declare a structure of Student */

typedef struct Student Student;

Linked List 6

struct Student {

char name[20];

char programme[20];

float grade;

Student *next;

Student *prev;

};

/*Functional prototype */

Student* get_students(); /* You may notice that the function get

void printStudentListInReverse(Student *last); /*to print the st

int main()

{

Student *start = NULL;

start = get_students();

printStudentListInReverse(start);

return 0;

}

Student* get_students() /* This mean that the function will retu

{

Student *current, *first, *prev; /*declare two pointers */

int selection; /* to ask if the user keep entering new stude

first = (Student*)calloc(1,sizeof(Student)); /*create the fi

current = first; /*Now the current node is also the first no

/*fill data for the first node */

printf("Student name: \n");

scanf("%s", current->name);

printf("Programme: \n");

scanf("%s", current->programme);

printf("Grade: \n");

Linked List 7

scanf("%f", ¤t->grade);

current->prev = NULL;

printf("Add more student? (1=Y, 0 = N): \n");

scanf("%d", &selection);

/*create the following nodes until the user select No */

while(selection) //while selection is 1 (Yes)

{

/* allocate the new node */

current->next = (Student*)calloc(1, sizeof(Student));

/*get the previous node before move the current pointer

prev = current;

/* move the current pointer to the next node */

current = current->next;

/*fill the new node */

printf("Student name: \n");

scanf("%s", current->name);

printf("Programme: \n");

scanf("%s", current->programme);

printf("Grade: \n");

scanf("%f", ¤t->grade);

current->prev = prev;

printf("Add more student? (1=Y, 0 = N): \n");

scanf("%d", &selection);

}

current->next = NULL; /* in case the last node */

return current; /* return the address of the last node */

}

// allows printing in reverse simply

void printStudentListInReverse(Student *last)

Linked List 8

{

int count = 0;

Student* p = NULL;

for(p = last; p != NULL; p = p->prev)

{

++count;

printf("Student #%d: ", count);

printf("%s, %s, %.2f\n", p->name, p->programme, p->grade

}

}

Using a doubly linked list (using pointers at the end) makes our data structure
more useful to create other methods for inserting and removing items of the
list, which cannot be done in a fixed array.

It is straightforward if the item is at the beginning or end of the list, but if it is a
distinct item, then we need to iterate until finding it (we must iterate almost the
complete list in the worst scenario).

Another disadvantage is to have more significant memory footprint for
handling the items, and again, it is slower by not having random (direct)
access to the items.

Remove an Item from the list
Steps:

1. Find the target item

2. Link the previous item with the next item

3. Release the memory of the current item.

View the diagram below:

Linked List 9

void deleteStudentByName(char* name, Student *first)

{

Student* p = first;

Student *temp = NULL;

for(p = first; p != NULL; p = p->next)

{

printf("Check %s ...\n", p->name);

if(strcmp(p->name,name) == 0)

{

/* link the previous item with the next item */

p->prev->next = p->next;

p->next->prev = p->prev;

temp = p->prev; /* this is used for marking the new

free(p); /*delete the item */

p = temp; /* new position of p */

}

/* then p will move to the next node from here before st

Linked List 10

}

}

The above code will only work if the to-be deleted node is in the middle of the
linked list. It will not work if the node to be deleted is the first or last.

Code for Resolving This

