
Pointers 1

Pointers
Tags c pointers

Created time

Lecture No. 7

Reviewed

Why do we need to use pointers?
Example: Write a function to double an input value

int doubleX(int x)

{

return x*2;

}

int x = 5;

x = doubleX(x);

The problem of the above approach is the amount of used memory and
complexity. In particular, the value of x is copied and passed to the
function doubleX . The returned value of doubleX is then assigned to x . Is there any
other way to do this task? With pointers!

Intro to Pointers
A pointer is a variable that stores the memory address of another variable.
Normally when you create a variable it holds a value e.g

int x = 10; // x stores the value 10

@October 2, 2024 11:56 PM

Pointers 2

But sometimes you want to work with the memory location where that value is
stored. This is where pointers come in. A pointer doesn’t store an actual value like
x does. Instead it stores the address of where x is stored in memory.

For the above x:

An area of memory is allocated to store an integer (10), which can be
accessed using the variable name number

The computer references the area or memory using an address.

Variables that can store addresses are called pointers.

The address that’s stored in a pointer is usually that of another variable as
illustrated below:

In the figure above, there is a pointer called pnumber that contains the address
of another variable called number

The value that is stored in pnumber is the address of the first byte of number

Every pointer will be asscoiated with a specific variable type, and it can only
be used to point to variables of that type. For example int *pnumber can only
point to variables of type int

Note a pointer of type void* can contain the address of a data item of any
type.

Pointers 3

Declaring Pointers
You can declare a pointer as follows:

type *pointerName;

Note you should initialise a declared pointer so that it does not point to anything:

int* pnumber = NULL;

If you want to initialise your variable pnumber with the address of a variable you
have already declared, you can use the address of operator &

int number = 15;

int *pointer = &number;

Lecture Break
Array and Pointers

An array is a collectin of objects of the type that you can refer to using a single
name.

A pointer holds the address of different variables at different times, as long as
they are all of the same type.

#include <stdio.h>

int main(int argc, char const *argv[])

{

 int inputArray[3] = {1,2,3};

 int* pFirstElement = &inputArray[0];

Pointers 4

 printf("The address of the first element is: %p\n", pFirstEl

 printf("The address obtained from the array name inputArray

 // you can get the value using the * operator

 printf("The value of the first element is %d\n", *pFirstElem

 printf("The address of the second element is: %p\n", pFirstE

 printf("The value of the second element is %d\n", *(pFirstEl

 printf("The address of the third element is: %p\n", pFirstEl

 printf("The value of the third element is %d\n", *(pFirstEle

 return 0;

}

Multidimensional Arrays with Pointers

#include <stdio.h>

int main(int argc, char const *argv[])

{

 char matrix[3][3] = {

 {'1','2','3'},

 {'4','5','6'},

 {'7','8','9'}

Pointers 5

 };

 printf("address of matrix : %p\n", matrix);

 printf("address of matrix[0][0] : %p\n", &matrix[0][0]);

 printf("value of matrix[0] : %p\n", matrix[0]);

 return 0;

}

String & Pointers
It is possible to declare strings as:

char *collegeName = "Dublin City University";

🚨 In exams, when stated to use pointers, pointers must be used to
complete tasks, otherwise full marks won’t be awarded.

Searching for a String
From the string.h library, the strchr() function searches for a given character in
the string. The first argument to the function is the string to be searched (which
will be the address of a char array), and the second argument is the character that
you’re looking for.

Pointers 6

char str[] = "The quick brown fox"; // The string to be searc

char ch = 'q'; // The character we are l

char *pGot_char = NULL; // Pointer initialized to

pGot_char = strchr(str, ch); // Stores address where c

printf("Character found was %c.", *pGot_char);

>> Character found was q.

The address of the first character in the string is given by the name of the array.
Because ‘q’ appears as the fifth character in the string, its address will be str + 4 .
Therefore the pGot_char will contain this offset address.

