
Bitwise Operators 1

Bitwise Operators
Tags

Created time

Reviewed

Let’s examine a group of operators that look something like the logical operators
you have seen earlier in the course, but in fact are quite different. These are called
the bitwise operators , because they operate on the bits in integer values. There are
six bitwise operators, as shown in Table below:

Operator Description

& Bitwise AND operator

| Bitwise OR operator

^ Bitwise exclusive OR (XOR) operator

~ Bitwise NOT operator, also known as bitwise complement operator

>> Bitwise shift right operator

<< Bitwise shift left operator

All of these only operate on integer types. The ~ operator is a unary operator, i.e.
it applies to one operand—and. The others are binary operators.

@November 7, 2024 12:04 PM

Bitwise Operators 2

🚨 It’s important not to confuse the bitwise operators and the logical
operators. The expression

x & y

will produce quite a different result from

x && y

in general.

Bitwise AND operator
int x = 13;

int y = 6;

int z = z & y;

printf("%d", z);

$./run

4

After the third statement, z will have the value 4 (binary 100). This is because the
corresponding bits in z and y are combined as follows:

Bitwise Operators 3

Bitwise OR operator
int x = 13;

int y = 6;

int z = z | y;

printf("%d", z);

$./run

15

This results in z containing the value 15 (binary 1111), because the bits combine as
follows:

Bitwise XOR operator
The bitwise XOR operator ,̂ produces a 1 if both bits are different and 0 if they are
the same.

int x = 13;

int y = 6;

int z = x ^ y; // XOR corresponding bits of x and y

Bitwise Operators 4

$./run

11

This results in z containing the value 11 (binary 1011), because the bits combine as
follows:

Bitwise NOT operator
The unary operator, ~ , flips the bits of its operand, so 1 becomes 0 and 0
becomes 1. You could apply this operator to x with the value 13 as before:

int x = 13;

int z = ~x;

The value 1111 0010 is -14, in two’s complement representation of negative
integers.

Bitwise Operators 5

Bitwise shift operator
Left
The left shift operators shift the bits in the left operand by the number of positions
specified by the right operand.

int value = 12;

int shiftcount = 3; // Number of positions to

int result = value << shiftcount; // Shift left shiftcount po

The variable result will contain the value 96

The binary number in value is 0000 1100

The bits are shifted to the left three positions, and 0s are introduced on the
right, so the value o value << shiftcount as a binary number will be 0110 0000

Right
The right shift operator moves the bits to the right, but it is a little more
complicated than a left shift. For unsigned values, the bits that are introduced on
the left (in the vacated positions as the bits are shifted right) are filled with zeros.

For signed values that are negative, the leftmost bit will be 1, and the result of a
right shift depends on your system. In most cases, the sign bit is propagated, so
the bits introduced on the right are 1 bits, but on some systems zeros are
introduced in this case too.

Bitwise Operators 6

🚨 The left-shift and right-shift operators should not be used for negative
numbers. If the second operand (which decides the number of shifts) is
a negative number (e.g., 3 >> -2), it results in undefined behavior in C. If
the number is shifted more than the size of the integer (e.g., 1 << 33),
the behavior is undefined.

Examples of using Bitwise operators
Add two numbers:
The bitwise OR of two numbers is just the sum of those two numbers if there is no
carry involved otherwise you just add their bitwise ADD.

int a = 5; //101

int b = 2; //010

printf("a + b = %d\n", a + b); //There is NO carry involved here

printf("a|b = %d\n", a|b);

a = 5;

b = 7;

printf("a + b = %d\n", a + b);

printf("a|b + a&b = %d\n", (a|b) + (a&b)); //There is carry invo

Running bitwiseex1.c...

a + b = 7

a|b = 7

Bitwise Operators 7

a + b = 12

a|b + a&b = 12

Swap two integers: This known trick is used to swap
two integers by using only two integer variables. The
beauty of it is that we don’t need a temporary
variable.

The most common solution for swapping variables is:

int temp = x;

x = y;

y = tmp;

You can do this with bitwise operators:

x ^= y;

y = x ^ y;

x ^= y;

How this works?
At start:

x = 0000 1101 /*original x = 13 in decimal */
y = 0000 0110 /*original y = 6 in decimal */

x = x ^ y

x = 0000 1101

y = 0000 0110

x = 0000 1011

Bitwise Operators 8

x = x ^ y

x = 0000 1011 /*this is the new x from the expression above *

y = 0000 0110

y = 0000 1101 /* original x */

x = x ^ y

x = 0000 1011

y = 0000 1101 /*this is the new y from the expression above

x = 0000 0110 /* original y */

Program to Check if int is odd or even

#include <stdio.h>

int main(int argc, char const *argv[])

{

 int x;

 printf("Enter a number:");

 scanf("%d", &x);

 if (x & 1){

 printf("Odd\n");

 } else{

 printf("Even\n");

 }

 return 0;

}

Bitwise Operators 9

 % ./oddoreven.out

Enter a number:2

Even

 % ./oddoreven.out

Enter a number:1

Odd

Why is this good?

It is much quicker for the computer to do this, as it is good at working with bits,
but if you use the modulus, it has a lot more work to do. Think about how you
would do it as a human.

