Dynamic Allocation 1: Malloc
and Free

Tags
Created time @October 29, 2024 11:07 AM
Reviewed Il

Use Memory as you go

In production, the majority of programs in C use pointers to some extent.

C also has a further facility called dynamic memory allocation that depends on
the concept of a pointer and provides a strong incentive to use pointers in
your code.

Dynamic memory allocation allows memory for storing data to be allocated
dynamically when your program executes.

Allocating memory dynamically is possible only because you have pointers
available.

Think back to one of the exercise you have done, that calculated the average
scores for a group of students. At the moment, it works for a fixed number of
students (e.g. we have assumed the program can handle up to 50 students, so
we declared an array int grade[50] .

Ideally, the program should work for any number of students without knowing
the number of students in the class in advance and without using any more
memory than necessary for the number of student scores specified.

Dynamic memory allocation allows you to do just that. You can create arrays
at runtime that are just large enough to hold the amount of data you require for
the task.

Dynamic Allocation 1: Malloc and Free

The malloc() Function

From the stdiib.n library.

When you use the naiio() function, you specify the number of bytes of memory
that you want allocated.

The function returns the address of the first byte of memory that it allocated in the
response to your request. Because you get an address, a pointer is the only place
to put it.

A template for using the malloc function is:

<type> *<pointerName> = (<type>*)malloc(<number_of_bytes_alloca:
Example
int *pNumber = (int*)malloc(200);

In this example we have requested 200 bytes of memory and assigned the
address of this block of memory to the pointer *pNumber

The pointer *pNumber will point to the first int location at the beginning of the 200
bytes that were allocated.

This whole block of memory can hold 50 int values on my computer, because
each int require 4 bytes. You can think about the same principle when working
with other types (e.g. char, float, double etc.).

If you don't want to remember the number of bytes needed for each data types,
there is a better way to allocate the memory as follows:

If you don't want to remember the number of bytes needed for each data types,
you can allocate memory as follows:

int *pNumber = (int*)malloc(50*sizeof(int));

Dynamic Allocation 1: Malloc and Free

In the above expression, the argument to naiioc() is clearly indicating that
sufficient bytes for accommodating 50 values of type int should be made
available.

« If the memory that you request can't be allocated for any
reason, malloc() returns a pointer with the value NULL.

e lIt's always a good idea to check any dynamic memory request immediately
using an if statement to make sure the memory is actually there before you try
to use it. For example, it is possible to write this:

int *pNumber = (int*)malloc(50*sizeof(50*sizeof(int)));
if(!'pNumber)
{

//... Code to deal with memory allocation failure, for e:
printf("Failed to allocate memory!");

Releasing Dynamically Allocated Memory

When you allocate memory, you should always release it when you no longer
need it.

Memory that you allocate will be automatically released when your program ends,
but it is better to explicitly release the memory when you are done, even if it is just
before you exit from the program.

#pNumber points to the original allocation
free(pNumber)
pNumber = NULL;

Examples

Dynamic Allocation 1: Malloc and Free

? Write a program accepts n integer numbers and prints the summary of
the elements.

#include<stdio.h>
#include<stdlib.h>

int sumOfArray(int* pNumbers, int length);
int productOfArray(int *pNumbers, int length);

int main(int argc, char*argv[])
{

int length = argc - 1;

int *pNumbers = NULL;

int *pResult = NULL;

pNumbers = (int*)malloc(length*(sizeof(int)));
if(!'pNumbers)

{
//... Code to deal with memory allocation failure, for
printf("Failed to allocate memory!");
return O;
3
for(int i = 0; i < length; ++1)
{
*(pNumbers+i) = atoi(argv[i+l]);
3

/*Calculate sum */

pResult = (int*)malloc(1*(sizeof(int)));
*pResult = sumOfArray(pNumbers, length);
printf("Sum of the array is: %d\n", *pResult);
free(pResult); //Free the memory

Dynamic Allocation 1: Malloc and Free

pResult = NULL;

printf("Now the programing is calculating the product of the

/* Calculate the product */

pResult = (int*)malloc(1*(sizeof(int)));

*pResult = productOfArray(pNumbers, length);
printf("Product of the array is: %d\n'", *pResult);
free(pResult); //Free the memory

free(pNumbers);

pResult = NULL;

pNumbers = NULL;

return 0;
}
int sumOfArray(int* pNumbers, int length)
{

int sum = 0;

for(int 1 = 0; 1 < length; ++1i)

{

sum += *(pNumbers + 1);

3

return sum;
}
int productOfArray(int *pNumbers, int length)
{

int product = 1;

for(int 1 = 0; 1 < length; ++1i)

{

product *= *(pNumbers + 1);

3

return product;
}

Dynamic Allocation 1: Malloc and Free

