Linked List

Linked List

Tags
Created time @November 12, 2024 11:04 AM
Reviewed Il

Why do we need linked lists?

Sometimes we need to use linked lists to optimize the usage of resources. Usually
not because you don't have enough memory, but because the device doesn't have
the chunk of memory together that you are looking for.

Singly Linked List

? Write a program to handle a list of students, each student contains the
following information:

o Name (an array of 20 characters)
e Programme (an array of 20 characters)
e Grade (float)

The program also provide some functions such as print the student lists,
sorting the list based on grades, calculate the average of grades.

You have dealt with such a problem by using an array of the structure, i.e.
something like student student[so] to store the information. A drawback of this is
that you have to ensure that a block of memory is available to be allocated to store
the data. What if the memory is fragmented and it is not possible to allocate a
block of memory for data storge? Let's use linked list as follows.

Name ‘Programme‘ Grade } *Next }—I

I—{ Name |Programme‘ Grade I *Next }—‘

\—{ Name ‘ Programme ‘ Grade ‘ *Next }—
NULL

#include<stdio.h>
#include<stdlib.h>

/*Declare a structure of Student */
typedef struct Student Student;

struct Student {
char name[20];
char programme[20];
float grade;
Student *next;

Iy
/*Functional prototype */
Student* get_students(); /* You may notice that the function ge:

void printStudentList(Student *start); /*to print the student 1:

int main()

{

Linked List

Linked List

Student *start = NULL;

start = get_students();
printStudentList(start);
return 0;

Student* get_students() /* This mean that the function will ret

Student *current, *first; /*declare two pointers */
int selection; /* to ask if the user keep entering new studt

first = (Student*)calloc(1,sizeof(Student)); /*create the f:
current = first; /*Now the current node is also the first n¢

/*fill data for the first node */
printf("Student name: \n");
scanf("%s", current->name);
printf("Programme: \n");
scanf("%s", current->programme);
printf("Grade: \n");

scanf ("%f", ¤t->grade);

printf("Add more student? (1=Y, @ = N): \n");
scanf("%d", &selection);

/*create the following nodes until the user select No */

while(selection) //while selection is 1 (Yes)

{
/* allocate node and change the current point */
current->next = (Student*)calloc(1, sizeof(Student));
current = current->next;

/*fill the new node */
printf("Student name: \n");

scanf("%s", current->name);
printf("Programme: \n");
scanf("%s", current->programme);
printf("Grade: \n");

scanf ("%f", ¤t->grade);

printf("Add more student? (1=Y, @ = N): \n");
scanf("%d", &selection);

¥

current->next = NULL; /* in case the last node */
return first; /* return the address of the first node */

/* This 1is the function to display the list of the students. Pa

void printStudentList(Student *start)

{
int count = 0;
Student* p = NULL;
for(p = start; p !'= NULL; p = p->next)
{
++count;
printf("Student #%d: ", count);
printf("%s, %s, %.2f\n", p->name, p->programme, p->grad¢
3
}

o Linked lists are invaluable in applications in which you need to process an
unknown number of structures, such as you have here.

e The main advantages of a linked list relate to memory usage and ease of
handling. You occupy only the minimum memory necessary to store and
process the list. Although the memory used may be fragmented, you have no
problem progressing from one structure to the next. As a consequence, in a
practical situation in which you may need to deal with several different types

Linked List

Linked List

of objects simultaneously, each can be handled using its own linked list, with
the result that memory use is optimized.

e Looking back at the code above, we have repeated the input process twice
(for the first node and the following nodes separately). Can you re-rewite the
program above without doing this?

Doubly Linked Lists

A disadvantage of a singly linked lists is that you can only go forward, you cannot
go backwards. A small modification of adding a previous pointer creates a doubly
linked list, which will allow you to go through a list in either direction.

*Prev ‘ Name | Programme ‘ Grade ‘ *Next }—|

L *Prev ‘ Name ‘ Programme ‘ Grade ‘ *Next }—‘

|—v{ *Prev ‘ Name \ Programme ‘ Grade ‘ *Next

NULL

#include<stdio.h>
#include<stdlib.h>

/*Declare a structure of Student */
typedef struct Student Student;

Linked List

struct Student {

+i

char name[20];

char programme[20];
float grade;
Student *next;
Student *prev;

/*Functional prototype */
Student* get_students(); /* You may notice that the function ge:
void printStudentListInReverse(Student *last); /*to print the sI

int main()

{

Student *start = NULL;

start = get_students();
printStudentListInReverse(start);
return 0;

Student* get_students() /* This mean that the function will ret

{

Student *current, *first, *prev; /*declare two pointers */
int selection; /* to ask if the user keep entering new studt

first = (Student*)calloc(1,sizeof(Student)); /*create the f:
current = first; /*Now the current node is also the first n¢

/*fill data for the first node */
printf("Student name: \n");
scanf("%s", current->name);
printf("Programme: \n");
scanf("%s", current->programme);
printf("Grade: \n");

scanf ("%f", ¤t->grade);
current->prev = NULL;

printf("Add more student? (1=Y, @ = N): \n");
scanf("%d", &selection);

/*create the following nodes until the user select No */
while(selection) //while selection is 1 (Yes)
{

/* allocate the new node */

current->next = (Student*)calloc(1, sizeof(Student));

/*get the previous node before move the current pointer
prev = current;

/* move the current pointer to the next node */
current = current->next;

/*fill the new node */
printf("Student name: \n");
scanf("%s", current->name);
printf("Programme: \n");
scanf("%s", current->programme);
printf("Grade: \n");

scanf ("%f", ¤t->grade);
current->prev = prev,

printf("Add more student? (1=Y, @ = N): \n");
scanf("%d", &selection);

current->next = NULL; /* in case the last node */
return current; /* return the address of the last node */

}

// allows printing in reverse simply
void printStudentListInReverse(Student *last)

Linked List

int count = 0;
Student* p = NULL;
for(p = last; p != NULL; p = p->prev)

{

++count;

printf("Student #%d: ", count);

printf("%s, %s, %.2f\n", p->name, p->programme, p->grad¢
3

e Using a doubly linked list (using pointers at the end) makes our data structure
more useful to create other methods for inserting and removing items of the
list, which cannot be done in a fixed array.

e ltis straightforward if the item is at the beginning or end of the list, butif itis a
distinct item, then we need to iterate until finding it (we must iterate almost the
complete list in the worst scenario).

» Another disadvantage is to have more significant memory footprint for
handling the items, and again, it is slower by not having random (direct)
access to the items.

Remove an Iltem from the list
Steps:
1. Find the target item
2. Link the previous item with the next item
3. Release the memory of the current item.

View the diagram below:

Linked List

*Prev ‘ Name | Programme ‘ Grade } *Next l——
‘+ *Prev ‘ Name ‘ Programme ‘ Grade ‘ *Next }
I *Prev ‘ Name \ Programme ‘ Grade ‘ *Next
NULL

void deleteStudentByName(char* name, Student *first)

{
Student* p = first;
Student *temp = NULL;

for(p = first; p != NULL; p = p->next)

{
printf("Check %s ...\n", p->name);
if(strcmp(p->name, name) == 0)
{

/* 1link the previous item with the next item */
p->prev->next p->next,

p->next->prev = p->prev;

temp = p->prev; /* this is used for marking the new
free(p); /*delete the item */

p = temp; /* new position of p */

¥

/* then p will move to the next node from here before s

Linked List

Linked List

The above code will only work if the to-be deleted node is in the middle of the
linked list. It will not work if the node to be deleted is the first or last.

Code for Resolving This

10

