
File: Binary 1

🖋️
File: Binary

Tags

Created time

Reviewed

The alternative to text mode operations on a file is binary node. In this mode, no
transformation of the data takes place, and there is no need for a format string to
control input or output. It is much simpler than text mode. The binary data is
transferred directly into the file as it appears in the memory.

Binary mode has the advantage that no data are transformed or precision lost, as
can happen due to the conversion process with text mode. It’s also faster than text
mode because there’s no transformation of data.

Figure below compares the storage of a value 125 in binary and text file. In binary
mode, the exact binary data is stored in hexadecimal value with 1 byte written into
the file. Meanwhile in text mode, it is transferred to 3 ASCII values: 1, 2, 5 so 3
bytes needed.

@November 21, 2024 12:18 PM

File: Binary 2

Opening a file in Binary mode
Similar to opening a text file, fopen can be used to open a file in binary mode.

Mode Description

rb Open a binary file to read to it

rb+ or r+b Open a binary file to read and write

wb Open or create a binary file to write to it. If the file exists, its length is
truncated to zero so the contents will be overwritten

wb+ or w+b Truncate an existing binary file to zero length and open it for update. If
the file does not exist, create it and open it for updating

ab Open or create a binary file to append to it. All writes will be placed at the
end of the file.

ab+ or a+b Open or create a binary file for update, with all writes happening at the
end of the file

Writing a Binary File
unsigned int fwrite(const void * pdata, unsigned int size, unsig

The first parameter is the address of an array of data items to be written. With
a parameter type void*, any type of array can be passed as the argument to
the function.

The second parameter is the size of an array element

The third parameter is the number of array elements.

The last parameter is the pointer to the file stream.

The integer returned is the number of items written. This will be less
than nitems if a write error occurs that prevents all of the data from being
written. If size or nitems is 0, nothing is written to the file.

File: Binary 3

#include<stdio.h>

#include<stdlib.h>

int main()

{

 FILE *pfile = NULL; // File pointer

 char *filename = "myfile.bin"; //So a binary file has an ext

 pfile = fopen(filename, "wb"); //open a file with a binary m

 if(!pfile) //check if the open operation work correctly

 {

 printf("Error opening %s for writing. Program terminated

 exit(1);

 }

 int data[] = {7,8,9}; //the array of integers

 int num_items = sizeof(data)/sizeof(int); //calculate the nu

 int wcount = fwrite(data, sizeof(int), num_items, pfile); //

 fclose(pfile); //close the file

 return 0;

}

Reading a Binary File
unsigned int fread(void * pdata, unsigned int size, unsigned int

The parameters are the same as for fwrite() :

pdata is the address of an array into which the data items are to be read,

size is the number of bytes per item,

nitems is the number of items to be read,

File: Binary 4

pfile is the file pointer.

#include<stdio.h>

#include<stdlib.h>

int main()

{

 FILE *pfile = NULL; // File pointer

 char *filename = "myfile.bin"; //So a binary file has an ext

 pfile = fopen(filename, "rb"); //open a file with a binary m

 if(!pfile) //check if the open operation work correctly

 {

 printf("Error opening %s for writing. Program terminated

 exit(1);

 }

 int data[] = {0,0,0}; //Create an array to store the data

 int num_items = sizeof(data)/sizeof(int); //Identify the len

 int wcount = fread(data, sizeof(int), num_items, pfile); //

 fclose(pfile); //close the file

 /* print the array to see if the file has been read correctl

 for(int i = 0; i < num_items; ++i)

 {

 printf("%d ", data[i]);

 }

 return 0;

}

File: Binary 5

❓ Write a program to store detail of a student into a binary file. The
program then reads the file and display the result.

#include<stdio.h>

#include<string.h>

typedef struct Student Student;

struct Student{

 char name[50];

 char college[40];

 int age;

 float grade;

};

int main()

{

 FILE *pfile = NULL;

 char *filename = "studentBinary.bin";

 pfile = fopen(filename, "wb");

 if(!pfile)

 printf("Failed to open %s.\n", filename);

 Student s;

 //Enter student detail from keyboard

 printf("Name: \n");

 scanf("%s", s.name);

 printf("College: \n");

 scanf("%s", s.college);

 printf("Age: \n");

 scanf("%d", &s.age);

 printf("Grade: \n");

File: Binary 6

 scanf("%f", &s.grade);

 //write the data into the binary file:

 int wcount1 = fwrite(s.name, 1, strlen(s.name), pfile); //wr

 int wcount2 = fwrite(s.college, 1, strlen(s.college), pfile)

 int wcount3 = fwrite(&s.age, sizeof(int), 1, pfile); //write

 int wcount4 = fwrite(&s.grade, sizeof(float), 1, pfile); //w

 fclose(pfile);

 //Read the binary file

 pfile = fopen(filename, "rb"); //Now the mode is read binary

 if(!pfile)

 printf("Failed to open %s.\n", filename);

 Student s2;

 int rcount1 = fread(s2.name, sizeof(char), strlen(s.name), p

 int rcount2 = fread(s2.college, sizeof(char), strlen(s.colle

 int rcount3 = fread(&s2.age, sizeof(int), 1, pfile);

 int rcount4 = fread(&s2.grade, sizeof(float), 1, pfile);

 fclose(pfile);

 printf("The following student information is found in the fi

 printf("Name: %s\n", s2.name);

 printf("College: %s\n", s2.college);

 printf("Age: %d\n", s2.age);

 printf("Grade: %f\n", s2.grade);

 return 0;

}

